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Abstract – Computational needs of multimedia based applications are met by multicore platforms supplemented with associated algorithmic support. In 
the context of Internet of Things and cloud as a connecting infrastructure, multimedia requirements pose a higher order thread owing to the huge number 
of nodes and connectivity. A Convolutional Neural Network (CNN) based supplement to an IoT infrastructure is proposed as an extensible solution with 
assured scalability 
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1  INTRODUCTION  

Multimedia has become an indispensable part of 

everyday life and its processing and transmission is passing 
through stages of maturity in technology as multimedia 
demand is ever increasing with varied stringent 
requirements. What began as a slide show of images 
accompanied with an audio track in 1970s has made its 
debut into life critical applications such as training of 
medicos on ‘virtual surgery’. While animation enabled 
multimedia is acclaimed to be one of best innovations in the 
recent past, very soon the corporate and research fraternity 
could, through multimedia processing, make users a part of 
a nonexistent world through the concept of virtual reality.  

Multimedia content, typically, consists of combinations of 
text, images, animations, audio and video along with, 
possibly, one or more signals that manifest some sort of 
system dynamics in an abstract manner. Such content poses 
technical challenges with respect to dimensions that include 
storage, processing, transmission and presentation. 
Whereas the storage and transmission related technical 
challenges are alleviated through technologies such as 
compression/decompression techniques and feature based 
storage/retrieval techniques, transmission challenges are, 
specifically, addressed using relevant communication 
paradigms.  This situation leaves one with challenges 
associated with multimedia processing most important of 
which is the inability to achieve real time processing of 
multimedia content. Multimedia processing application 
software based on highly optimized library support such as 
OpenCV working upon full fledge computing hardware, 
possibly, with multicore support shall be in a position to 
meet the real-time requirements of multimedia content.  
Recently, the multicore hardware has been replaced with 
GPGPU (General Purpose Graphic Processing Units) 
hardware innovated by Nvidia. Most of the multimedia 
based applications expose spatial parallelism and as such, 
ideally, real time multimedia processing with linear speed-

up could be achieved on a generic parallel processing 
hardware architecture that employs either the multicore or 
GPGPU hardware as the fundamental building block. 
However, while the cost of building such architecture is, 
prohibitively, expensive, making the situation worse, the 
constraints on the real-time processing of complex 
multimedia processing applications continue to grow 
defeating the effectiveness of any of such paradigms. The 
main objective of this paper is to elaborate, by far, on the 
most complex application space in the backdrop of Internet 
of Things (IoT) and to propose a scalable solution thereof. 
This paper is organized as follows: Section II presents the 
complex application space and the associated challenges. 
Section III compares the various existing software 
platforms which are generic but have been successfully 
employed for complex image processing and have enough 
potential to address multimedia content processing in its 
true sense. These software platforms are based on 
Convolutional Neural Networks (CNN) which is explained 
in Section IV.  Section V presents CNN based architecture 
for a class of such complex multimedia processing 
application space. Conclusions of the present work are 
done in Section VI. 

2  ISSUES AND CHALLENGES 

2.1 Dawn of IOT and Cloud 

The need to process larger data faster is what drives 
innovation in computation. To this end, distributed 
computing has come a long way to help progressively build 
more and more complex frameworks to handle real-time 
multimedia requirements. Newer multi-core complex 
architectures lay the foundation for parallel and distributed 
applications to process the data.  

The rise of the framework which led to the eventual 
development of the Internet of Things (IoT) demands a 
more suitable way to enable its users to process multimedia 
and its true nature of ubiquity will not be realized until it 
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becomes more media friendly. The current research and 
development in IoT does not mandate the features of 
multimedia objects and this may prove to be a setback for 
IoT being embraced by the world in a truly complete and 
holistic fashion manner.  

The success of content driven social media is because of its 
capability to process multimedia data. Users would not be 
attracted to a slow loading social media site. This is possible 
because of the use of cloud technology in handling data. 
Cloud technology provides users with large amounts of 
data storage and provides quick get and view services. 
While cloud technology is progressing at a rapid pace, 
where we lag is in the hardware architecture to support this 
technology. Cellular service businesses have recognized 
this concern and are upgrading their telecommunication 
infrastructure to cater to the use of multimedia driven 
services. However, cloud technology and required 
hardware infrastructure are technologically at different 
stages in their capabilities at the present stage with respect 
to the maturity of their technology.  

Summarizing, the prime need of applications like those of 
social networks which has, intrinsically, been the ability to 
carry out large grain size computation has become 
multifold owing to multimedia enabled applications of 
which social networks is a significant one. Secondly, IoT 
which has adapted cloud as a means for connectivity, in 
years to come, would witness multimedia enablement as a 
mandatory requirement. Thus, it would be ideal to have 
both the cloud infrastructure and the IoT network 
infrastructure to be supported by a common paradigm 
which can operate in a broad spectrum of computational 
requirements starting from big grain size computation on 
cloud servers up to, relatively, smaller grain size of 
computation of the IoT network infrastructure. The essence 
of this paper is to present such an extensible paradigm 
grown into architecture to meet multiple applications’ 
multimedia requirements while ensuring   scalability.  

The FIT-IoT (Future Interest Testbeds – IoT) Lab 
encourages users to use IoT technology and experiment 
using different WSN nodes. The Lab Node is a hardware 
architecture that is setup and made available to the user 
during experimentation. While FIT-IoT is open access and 
provides free storage to users, it will become increasingly 
hard to provide such facilities as more users embrace IoT 
for multimedia related uses. The aim of FIT-IoT Lab is to 
provide a scientific test bed for users to test their 
frameworks without the hassle of arranging for the 
necessary hardware. It emboldens developers without 
knowledge of hardware implementation to test their work. 
The quick deployment and result collection-analysis 
provides a very lucrative and attractive offer for users. The 
limitation of this however, is that it offers a platform to test 
small sensor networks for a specific set of use-cases. Even a 
robust test-bed solution like the FIT-IoT Lab has not been 

able to recognize the need for a more media focused 
approach when it comes to evolving the IoT technology. 
Similarly, GPU based hardware from Nvidia viz. the 
Nvidia Jetson TK1 series of hardware has the necessary 
resources to get multimedia enabled but is prohibitively 
expensive to get into an IoT space. Further, a gigantic effort 
is by IBM in building Watson IoT platform where, again, 
there is no big focus on multimedia requirement of future 
IoT node and networks.  

2.2 Issues related to Standardization 

While many organizations and people continue to work on 
IoT, which is as yet not a very mature technology with 
respect to standards, the OpenWSN tries hard to achieve its 
goal of creating an open-source hardware and software 
implementation platform for all users irrespective of the 
protocols which users may use in their work. This is both 
complex and challenging. However, here too metadata is 
given the spotlight while multimedia takes a backstage role. 
Standardization of multimedia protocols in IoT is in a 
nascent phase. The Open Source community welcomes 
both FIT-IoT Lab and WSN with open arms but fails to 
recognize that both these initiatives may find it hard to 
exist when multimedia takes the stage. They may not be 
able to provide for many users and they may even cease to 
be Open Source.  

The incredible amount of research spending on artificial 
intelligence and machine learning has led to the 
development of platforms like the IBM-Watson which 
combines the best of computing and intelligence. However, 
even here, multimedia functions take a back seat even as 
IBM newly introduced Watson Natural Language 
Understanding API. IBM Bluemix, the cloud platform 
which can cater to different types of applications including 
multimedia related ones, has matured into a robust PaaS 
(Platform as a Service) but, the necessary hardware 
architecture required for development of platforms is 
absent. The API’s on Watson’s related use in multimedia 
applications are scarce and have great limitations of use.  

Interestingly, even the Watson webpage points us to Deep 
Learning being the solution for collating and analyzing 
unstructured data. This suggests to us that there is a dire 
need of performance enhancement to be carried out on 
mature hardware platforms like the Raspberry Pi on Linux 
kernel or on ARM based hardware with Android OS that 
we see on smartphones, so that they can match up to the 
fast-paced and well-rounded evolution of IoT and related 
technologies. CNN’s come to our aid here with their strong 
foundations in Deep Learning and their ability to process 
not only metadata but also multimedia data seamlessly. 
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3 TOOLS 

Neural Networks and  Deep Learning have found many 
applications from a simple photo search on Google to 
medical imaging. Hence, software that helps in 
implementation of neural networks was developed. Some 
of the described softwares are just libraries incorporating 
many function calls such as various forms of convolution, 
filtering and those which aid in our need to develop a novel 
CNN model. A few of the available tools are described. 

Fig 1: The Methodology to develop a CNN platform 

3.1 Caffe, Torch, Theano, TensorFlow 

Caffe: It is a deep learning framework. It has a Python 
based API that can be used for Machine Learning 
applications. Both CPU and GPU can be used by changing 
the status of a flag. Models can be trained without any 
code. 

Table 1: CNN development libraries: A Comparison 

Torch: It is a computational framework and the API is 
written in Lua. It provides fast and efficient GPU support. 
Graphs of Neural Networks can be built and parallelized 
over the CPU and GPU. 

Theano:  A Python library for mathematical computation 
based on multi-dimensional arrays. It provides accelerated 
performance using GPU. Theano compiled functions to 
work with NumPy are available. It is efficient when 
working with RNNs. 

Tensorflow: It is a software library that uses data flow 
graphs for numerical computations. The nodes in the graph 
represent the mathematical operation and the edges 
represent the multidimensional array data that is passed on 
from one node to the other. 

 

Tools Description Core 
Language OS Application 

OpenCV 
Image 

Processing 
toolkit 

C, C++ Cross -
Platform 

Enable 
computers to 

retrieve 
information 

by 
processing 
images and 

videos 

OpenGL 

Environment 
to develop 
2D and 3D 
graphics 

application 

C Cross -
Platform 

Hardware 
accelerated 
rendering 

SceneLib 

Library for 
Simultaneous 
Localization 

and Mapping 
(SLAM) 

C++ Linux MonoSLAM 

ARToolKit 
Open source 

tracking 
library 

- Cross -
Platform 

Augmented 
Reality 

Unity Game Engine C, C++ 
Deployment 

across 
various OS 

Provides 2D 
and 3D 
game 

development 

CNNdroid 
GPU 

accelerated 
library 

- Cross -
Platform 

Allows 
execution of 

CNNs on 
Android 

Table 2: Comparitive study of different Image Processing 
Softwares 

3.2 OpenCV, OpenGL, Scenelib, OpenScene Graph, 
AR Toolkit, Unity 3D 

OpenCV: This is a traditional image processing tool kit. A 
brief description about it is given in the introduction 
section. 

OpenGL:  It provides an environment to develop 2D and 
3D graphics application. These applications can be 
deployed over a wide range of platforms making in 

 Caffe Torch Theano TensorFlow 

Languages C++, 
Python, 
MatLab 

Lua, 
Python 

Python C++, Shell 
Scripts 

Multi-CPU 
support 

Yes Yes Partial Inception 

Multi-GPU 
support 

No No  Experimental  Yes 

Readable 
Source Code 

C++ Lua No No 

Regional 
CNN 

support 

Yes(best) Yes Mediocre No 
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portable. GLUT helps in portability by providing an API to 
execute OpenGL programs. 

Scenelib: A C++ based library for Simultaneous 
Localization and Mapping and allows real time processing 
by interfacing a camera (MonoSLAM). 

OpenScene Graph: It is a C++ and OpenGL based 3D 
graphics toolkit. It has high portability and is used in game 
development, virtual reality, visual simulation and 
visualization. 

AR Toolkit: It is an open source tracking library that helps 
developers build Augmented Reality applications 

Unity3D:  It is a game engine that provides 2D and 3D 
game development. These games can be deployed across 
devices. Unity 3D and OpenScene Graph are supported and 
coding can be done using various languages. 

4 CONVOLUTIONAL NEURAL NETWORKS 
Convolutional Neural Networks are seen to be the 
spearheads leading to exploration and experimentation of 
Deep Learning concepts to help solve problems that 
involve processing large meta and multimedia data. The 
data can be unstructured, unclassified and even random. 
The ingeniousness of CNNs lies in its ability to build a 
platform to process multimedia by enhancing the capability 
of hardware frameworks using simple convolutional layers. 
Such capabilities advocate the adoption of evolving 
technologies like IoT in a well-rounded manner.      

5 SOLUTION PHASE 

     Fig 2: CNN development Layers 
 
Convolutional Neural Networks (CNNs) can be considered 
as a special architecture of neural networks that is 
specifically used for image recognition. CNNs convolve the 
input given using a filter of a specific size applied over the 
entire input patch. These make them sensitive to or learn a 
certain feature or structure of the input. Detection models 
based on Convolutional Neural Networks are performance 
efficient and highly accurate due to the training of the 
neural network widely using datasets. They are used from 
applications such as Facebook for its automated photo 

tagging to self- drive cars as they can be used to identify 
faces, traffic signals or other objects such as cars. 

When an image is given as an input the system, the 
computer sees it as an array of pixels. While the human 
brain can effectively identify, the details present in the 
image after viewing it through eyes, the neural network 
does so by identifying the low-level features such as edges 
and corners and then using the information learnt during 
the training phase to classify the image. 

At the crux of Convolutional Neural Networks is the 
process of convolution. Convolution is, simply, a sliding 
window function applied to its input layer (a matrix of 
numbers) and computing the corresponding output layer.  
The matrix of numbers could be an image data where each 
number signifies a pixel. The sliding window is called a 
kernel, filter or a feature detector. Each layer of CNN 
(corresponding to input layer or the hidden layers of an 
ANN), typically, applies hundreds of kernels and combine 
their results. During the training phase, each CNN layer, 
automatically, learns the values of each of its kernels. 
Secondly, unlike the case of Artificial Neural Nets (ANN), 
each neuron of a specific layer is not connected to all 
neurons of the succeeding layer. The inputs to a layer is 
apportioned among different kernels of that layer. 
Applying this paradigm to an image classification problem, 
a CNN layer may learn to construct edges from raw pixels 
in the first layer, learn to construct small shapes in the 
second layer and eventually at some layer may learn to 
recognize a specific object. None of the connectivity 
between successive layers is fully-connected.  However, the 
final layer is the Fully Connected Layer, which is used for 
the classification of the image. The program consists of a 
number of classifications that a feature of the image might 
fit into. This layer considers the output of the previous 
layer as an input and detects the closest class that the 
features in the image correspond to and makes predictions. 

The training phase of a neural network involves iterative of 
a relevant error minimization algorithm similar to back 
propagation algorithm. During the first iteration, the 
program is unable to extract any low-level features or 
classify the image. A loss function is used to calculate the 
error factor. This error is used to alter the kernel values and 
the resulting connections so as to minimize the error. Once 
acceptable error is reached, the network is said to be trained 
and usable for testing.  

The inconvenience with respect to CNN is that the cost 
involved in the training of the neural network and the time 
taken to arrive at an output is high. This has forced the 
need for an acceleration mechanism. Different acceleration 
mechanisms have been proposed such as the convolution 
operation in the spatial domain being converted to dot 
operation in the frequency domain [6], CNNdroid [7] which 
is a set of library functions that helps in GPU acceleration of 
a CNN code and run it on Android, parallelization of tasks 
on GPU or implementing Fourier Transform using Open 

 

Output  
Layer 

Input  
Layer 

Hidden 
Layer 
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Computing Language (Open CL) on the convolution based 
detection model [8]. 

Thus, an accelerated neural network is necessary for the 
real-time processing of multimedia data. 

Fig 3: CNN methodology  

6  PLATFORM FOR EXPERIMENTATION 

In the back drop of the gamut of tools briefed earlier 
and their support to build CNN model alongside the 
critical issue associated with multimedia applications with 
emphasis on IoT and cloud based applications, the need of 
the hour is to build an experimental test bed for research 
investigations on CNNs for their applicability.  Such an 
experimental test bed as depicted in Fig.1 is built by 
authors and employed to execute case studies briefed in the 
following section. The test bed hardware, simply, consists 
of a host computer that runs Ubuntu 16.04 which is 
interfaced with an embedded system. The host computer is 
equipped to receive the image/video data either from open 
source repository or could even capture the image and 
create the repository. Basically, the CNN augmented 
processing software operates on the data and trains the 
network for the intended mission. Once trained, the 
weights associated with the kernel and the CNN model 
itself is downloaded into the embedded system. Thus, the 
host computer assumes the resource intensive training 
activity whereas the embedded system executes the testing 
phase or the real-life execution of the intended objective. 
The software architecture of the test bed is depicted in 
Fig.1. The target deployment port is customization software 
that maps the API calls usable on the host computer with 
its embedded counterpart. The TDP shall have to be ported 
whenever the embedded hardware changes. In the present 
work, a smart phone running Android 4.0 is used as the 
target hardware. 

7 USECASES 
The very first application we aimed to develop involved the 
use of the CIFAR-10 dataset consists of 60000 color images 
in 10 classes with 6000 images per class. The size of these 
images for versatility was 32 pixels by 32 pixels. The data 
set consisted of 50000 training images and 10000 test 
images. (put appropriate reference in this) 

The dataset is first divided into five training batches and 
one test batch with each consisting of 10000 images each. 
The training batch and the test batch differ in, not only the 

number of images they have to offer, but also in the 
number of images from each class they input to the 
convolutional layer of the neural net. The test batch 
contains exactly 1000 randomly-selected images from each 
class. The training batches however may contain more 
images from one class than another. Between them, the 
training batches contain exactly 5000 images from each 
class. The model CIFAR-10 chosen was tested using an 
above-mentioned tool called as Torch. Mean Accuracy 
levels in running and testing the model on various different 
data sets are compiled and tabulated in table below. 

 

Iteration 
Number: 

Accuracy level 
after 10 epochs: 

Mean accuracy 
value: 

1.  98.425 - 

2.  97.415 97.920 

3.  98.620 98.153 

 

Table 3: Output comparison 

Another implementable idea which we took to working on 
was based on thnets. Thnets is the work of Marko Vitez 
who has compiled together a basic library which can run 
neural networks created using the aforementioned software 
tool called as Torch. The idea behind having a compiled 
library includes the versatility with which we may be able 
to import developed neural networks (some which have 
that have been developed from scratch and some which 
have been obtained from biological neural structures) 
directly into the test code and run it. One of the main 
requirements which were stated for the successful 
implementation of thnets was OpenBLAS (Open Source – 
Basic Linear Algebra Subprograms). This OpenBLAS is an 
API with hand crafted optimizations for several processor 
architectures like Intel’s Sandy Bridge and Loongson. 
Successful implementation of the thnets module for 
Image/Object recognition and classification gives us a 
forward path time of about 7 seconds for the direct 
implementation without the use of Hardware Accelerators 
such as cuDNN (Nvidia CUDA Deep Neural Network 
library).  

The final and holistic environment we built includes an 
Android application which could make use of the host 
phone’s camera to take images for Object Recognition and 
Classification. This was accomplished through the use of a 
trained Caffe model. This specific application makes use of 
Fast R-CNN for Object detection. One of the major things to 
keep in mind while considering this specific model of Fast 
R-CNN is the concept of R-CNN which is Region-based 
Convolutional Neural Network. Fast R-CNN was created 
by Ross Girshick at Microsoft Research, Redmond, USA. It 
is a framework for faster object recognition when compared 
with regular neural networks. Fast R-CNN runs almost 200 
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times faster than regular R-CNN and almost 10 times faster 
than Spatial Pyramid Pooling in a test real-time scenario. 

The developed Android App on the basis of this concept of 
Fast R-CNN includes a license from MIT open-source 
image datasets. It has a support for Android version 4.0 and 
upwards and supports all devices which have a 64-bit 
architecture and/or an ARM v7 processor.  The Caffe 
model and weights used for proper functioning of the CNN 
network is pushed onto an SD card and is input to the 
Phone’s SD card slot. The entire system is built using 
Gradle on Ubuntu or on Android Studio on Windows 
before exporting the. apk file to the phone.  

The developed Caffe model is capable of both object as well 
as scene detection. An example output is shown below. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

             Fig 4: Sample Output 

Although in this section we have spoken about multiple 
different applications and methods which we have used for 
development of Object Recognition and Classification, the 
main intention behind such a vast study lies in the scope for 
future IoT systems. The main idea here is to come out with 
a holistic IoT network which is, by itself, a separate and 
autonomous entity. Present day IoT nodes act as channel 
gateways for transfer of information from one device to 
another. No amount of machine intelligence and autonomy 
exists in their part and are thus unable to work more 
efficiently and achieve a more well-rounded connectivity 
within the nodal network. By developing support structure 
to improve these nodal networks, as described below, we 
may be able to come out with a new age of IoT nodes. The 
idea is to come out with a system architecture which 
consists of a Raspberry Pi or a cellphone running Android 
which is capable of inter/intra communication within a 
given nodal set in a more effective way than present day 
IoT nodes. Such smart IoT networks warrant multimedia as 
a critical resource whose very presence increases the 

computational burden wherein the solution framework 
based on CNNs would become handy.  

8 CONCLUSIONS 
CNN based computational support for multimedia 

enabled applications with emphasis on IoT and Cloud 
platform is presented in this paper. Use cases employed 
elsewhere have been experimented using software tools 
briefed in section III. 
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