
International Journal of Scientific & Engineering Research, Volume 8, Issue ƘȮɯ ×ÙÐÓɪƖƔƕƛɯɯ
ISSN 2229-5518

IJSER © 2017
http://www.ijser.org

Use of CNNs for the development of multimedia
applications: A Virtual Assistance System

 A Comparitive Study
Akshay BN, Muthu Santhiya S, Vibhu A Bharadwaj, Dr. Rajeshwari Hegde

Abstract – Computational needs of multimedia based applications are met by multicore platforms supplemented with associated algorithmic support. In
the context of Internet of Things and cloud as a connecting infrastructure, multimedia requirements pose a higher order thread owing to the huge number
of nodes and connectivity. A Convolutional Neural Network (CNN) based supplement to an IoT infrastructure is proposed as an extensible solution with
assured scalability

Index Terms – Multimedia, CNN, Virtual Assistance, IoT, Caffe, Torch, Theano, TensorFlow, OpenCV

 —————————— ——————————

1 INTRODUCTION

Multimedia has become an indispensable part of

everyday life and its processing and transmission is passing
through stages of maturity in technology as multimedia
demand is ever increasing with varied stringent
requirements. What began as a slide show of images
accompanied with an audio track in 1970s has made its
debut into life critical applications such as training of
medicos on ‘virtual surgery’. While animation enabled
multimedia is acclaimed to be one of best innovations in the
recent past, very soon the corporate and research fraternity
could, through multimedia processing, make users a part of
a nonexistent world through the concept of virtual reality.

Multimedia content, typically, consists of combinations of
text, images, animations, audio and video along with,
possibly, one or more signals that manifest some sort of
system dynamics in an abstract manner. Such content poses
technical challenges with respect to dimensions that include
storage, processing, transmission and presentation.
Whereas the storage and transmission related technical
challenges are alleviated through technologies such as
compression/decompression techniques and feature based
storage/retrieval techniques, transmission challenges are,
specifically, addressed using relevant communication
paradigms. This situation leaves one with challenges
associated with multimedia processing most important of
which is the inability to achieve real time processing of
multimedia content. Multimedia processing application
software based on highly optimized library support such as
OpenCV working upon full fledge computing hardware,
possibly, with multicore support shall be in a position to
meet the real-time requirements of multimedia content.
Recently, the multicore hardware has been replaced with
GPGPU (General Purpose Graphic Processing Units)
hardware innovated by Nvidia. Most of the multimedia
based applications expose spatial parallelism and as such,
ideally, real time multimedia processing with linear speed-

up could be achieved on a generic parallel processing
hardware architecture that employs either the multicore or
GPGPU hardware as the fundamental building block.
However, while the cost of building such architecture is,
prohibitively, expensive, making the situation worse, the
constraints on the real-time processing of complex
multimedia processing applications continue to grow
defeating the effectiveness of any of such paradigms. The
main objective of this paper is to elaborate, by far, on the
most complex application space in the backdrop of Internet
of Things (IoT) and to propose a scalable solution thereof.
This paper is organized as follows: Section II presents the
complex application space and the associated challenges.
Section III compares the various existing software
platforms which are generic but have been successfully
employed for complex image processing and have enough
potential to address multimedia content processing in its
true sense. These software platforms are based on
Convolutional Neural Networks (CNN) which is explained
in Section IV. Section V presents CNN based architecture
for a class of such complex multimedia processing
application space. Conclusions of the present work are
done in Section VI.

2 ISSUES AND CHALLENGES

2.1 Dawn of IOT and Cloud

The need to process larger data faster is what drives
innovation in computation. To this end, distributed
computing has come a long way to help progressively build
more and more complex frameworks to handle real-time
multimedia requirements. Newer multi-core complex
architectures lay the foundation for parallel and distributed
applications to process the data.

The rise of the framework which led to the eventual
development of the Internet of Things (IoT) demands a
more suitable way to enable its users to process multimedia
and its true nature of ubiquity will not be realized until it

1380

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 8, Issue ƘȮɯ ×ÙÐÓɪƖƔƕƛɯɯ
ISSN 2229-5518

IJSER © 2017
http://www.ijser.org

becomes more media friendly. The current research and
development in IoT does not mandate the features of
multimedia objects and this may prove to be a setback for
IoT being embraced by the world in a truly complete and
holistic fashion manner.

The success of content driven social media is because of its
capability to process multimedia data. Users would not be
attracted to a slow loading social media site. This is possible
because of the use of cloud technology in handling data.
Cloud technology provides users with large amounts of
data storage and provides quick get and view services.
While cloud technology is progressing at a rapid pace,
where we lag is in the hardware architecture to support this
technology. Cellular service businesses have recognized
this concern and are upgrading their telecommunication
infrastructure to cater to the use of multimedia driven
services. However, cloud technology and required
hardware infrastructure are technologically at different
stages in their capabilities at the present stage with respect
to the maturity of their technology.

Summarizing, the prime need of applications like those of
social networks which has, intrinsically, been the ability to
carry out large grain size computation has become
multifold owing to multimedia enabled applications of
which social networks is a significant one. Secondly, IoT
which has adapted cloud as a means for connectivity, in
years to come, would witness multimedia enablement as a
mandatory requirement. Thus, it would be ideal to have
both the cloud infrastructure and the IoT network
infrastructure to be supported by a common paradigm
which can operate in a broad spectrum of computational
requirements starting from big grain size computation on
cloud servers up to, relatively, smaller grain size of
computation of the IoT network infrastructure. The essence
of this paper is to present such an extensible paradigm
grown into architecture to meet multiple applications’
multimedia requirements while ensuring scalability.

The FIT-IoT (Future Interest Testbeds – IoT) Lab
encourages users to use IoT technology and experiment
using different WSN nodes. The Lab Node is a hardware
architecture that is setup and made available to the user
during experimentation. While FIT-IoT is open access and
provides free storage to users, it will become increasingly
hard to provide such facilities as more users embrace IoT
for multimedia related uses. The aim of FIT-IoT Lab is to
provide a scientific test bed for users to test their
frameworks without the hassle of arranging for the
necessary hardware. It emboldens developers without
knowledge of hardware implementation to test their work.
The quick deployment and result collection-analysis
provides a very lucrative and attractive offer for users. The
limitation of this however, is that it offers a platform to test
small sensor networks for a specific set of use-cases. Even a
robust test-bed solution like the FIT-IoT Lab has not been

able to recognize the need for a more media focused
approach when it comes to evolving the IoT technology.
Similarly, GPU based hardware from Nvidia viz. the
Nvidia Jetson TK1 series of hardware has the necessary
resources to get multimedia enabled but is prohibitively
expensive to get into an IoT space. Further, a gigantic effort
is by IBM in building Watson IoT platform where, again,
there is no big focus on multimedia requirement of future
IoT node and networks.

2.2 Issues related to Standardization

While many organizations and people continue to work on
IoT, which is as yet not a very mature technology with
respect to standards, the OpenWSN tries hard to achieve its
goal of creating an open-source hardware and software
implementation platform for all users irrespective of the
protocols which users may use in their work. This is both
complex and challenging. However, here too metadata is
given the spotlight while multimedia takes a backstage role.
Standardization of multimedia protocols in IoT is in a
nascent phase. The Open Source community welcomes
both FIT-IoT Lab and WSN with open arms but fails to
recognize that both these initiatives may find it hard to
exist when multimedia takes the stage. They may not be
able to provide for many users and they may even cease to
be Open Source.

The incredible amount of research spending on artificial
intelligence and machine learning has led to the
development of platforms like the IBM-Watson which
combines the best of computing and intelligence. However,
even here, multimedia functions take a back seat even as
IBM newly introduced Watson Natural Language
Understanding API. IBM Bluemix, the cloud platform
which can cater to different types of applications including
multimedia related ones, has matured into a robust PaaS
(Platform as a Service) but, the necessary hardware
architecture required for development of platforms is
absent. The API’s on Watson’s related use in multimedia
applications are scarce and have great limitations of use.

Interestingly, even the Watson webpage points us to Deep
Learning being the solution for collating and analyzing
unstructured data. This suggests to us that there is a dire
need of performance enhancement to be carried out on
mature hardware platforms like the Raspberry Pi on Linux
kernel or on ARM based hardware with Android OS that
we see on smartphones, so that they can match up to the
fast-paced and well-rounded evolution of IoT and related
technologies. CNN’s come to our aid here with their strong
foundations in Deep Learning and their ability to process
not only metadata but also multimedia data seamlessly.

1381

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 8, Issue ƘȮɯ ×ÙÐÓɪƖƔƕƛɯɯ
ISSN 2229-5518

IJSER © 2017
http://www.ijser.org

3 TOOLS

Neural Networks and Deep Learning have found many
applications from a simple photo search on Google to
medical imaging. Hence, software that helps in
implementation of neural networks was developed. Some
of the described softwares are just libraries incorporating
many function calls such as various forms of convolution,
filtering and those which aid in our need to develop a novel
CNN model. A few of the available tools are described.

Fig 1: The Methodology to develop a CNN platform

3.1 Caffe, Torch, Theano, TensorFlow

Caffe: It is a deep learning framework. It has a Python
based API that can be used for Machine Learning
applications. Both CPU and GPU can be used by changing
the status of a flag. Models can be trained without any
code.

Table 1: CNN development libraries: A Comparison

Torch: It is a computational framework and the API is
written in Lua. It provides fast and efficient GPU support.
Graphs of Neural Networks can be built and parallelized
over the CPU and GPU.

Theano: A Python library for mathematical computation
based on multi-dimensional arrays. It provides accelerated
performance using GPU. Theano compiled functions to
work with NumPy are available. It is efficient when
working with RNNs.

Tensorflow: It is a software library that uses data flow
graphs for numerical computations. The nodes in the graph
represent the mathematical operation and the edges
represent the multidimensional array data that is passed on
from one node to the other.

Tools Description Core
Language OS Application

OpenCV
Image

Processing
toolkit

C, C++ Cross -
Platform

Enable
computers to

retrieve
information

by
processing
images and

videos

OpenGL

Environment
to develop
2D and 3D
graphics

application

C Cross -
Platform

Hardware
accelerated
rendering

SceneLib

Library for
Simultaneous
Localization

and Mapping
(SLAM)

C++ Linux MonoSLAM

ARToolKit
Open source

tracking
library

- Cross -
Platform

Augmented
Reality

Unity Game Engine C, C++
Deployment

across
various OS

Provides 2D
and 3D
game

development

CNNdroid
GPU

accelerated
library

- Cross -
Platform

Allows
execution of

CNNs on
Android

Table 2: Comparitive study of different Image Processing
Softwares

3.2 OpenCV, OpenGL, Scenelib, OpenScene Graph,
AR Toolkit, Unity 3D

OpenCV: This is a traditional image processing tool kit. A
brief description about it is given in the introduction
section.

OpenGL: It provides an environment to develop 2D and
3D graphics application. These applications can be
deployed over a wide range of platforms making in

 Caffe Torch Theano TensorFlow

Languages C++,
Python,
MatLab

Lua,
Python

Python C++, Shell
Scripts

Multi-CPU
support

Yes Yes Partial Inception

Multi-GPU
support

No No Experimental Yes

Readable
Source Code

C++ Lua No No

Regional
CNN

support

Yes(best) Yes Mediocre No

1382

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 8, Issue ƘȮɯ ×ÙÐÓɪƖƔƕƛɯɯ
ISSN 2229-5518

IJSER © 2017
http://www.ijser.org

portable. GLUT helps in portability by providing an API to
execute OpenGL programs.

Scenelib: A C++ based library for Simultaneous
Localization and Mapping and allows real time processing
by interfacing a camera (MonoSLAM).

OpenScene Graph: It is a C++ and OpenGL based 3D
graphics toolkit. It has high portability and is used in game
development, virtual reality, visual simulation and
visualization.

AR Toolkit: It is an open source tracking library that helps
developers build Augmented Reality applications

Unity3D: It is a game engine that provides 2D and 3D
game development. These games can be deployed across
devices. Unity 3D and OpenScene Graph are supported and
coding can be done using various languages.

4 CONVOLUTIONAL NEURAL NETWORKS
Convolutional Neural Networks are seen to be the
spearheads leading to exploration and experimentation of
Deep Learning concepts to help solve problems that
involve processing large meta and multimedia data. The
data can be unstructured, unclassified and even random.
The ingeniousness of CNNs lies in its ability to build a
platform to process multimedia by enhancing the capability
of hardware frameworks using simple convolutional layers.
Such capabilities advocate the adoption of evolving
technologies like IoT in a well-rounded manner.

5 SOLUTION PHASE

 Fig 2: CNN development Layers

Convolutional Neural Networks (CNNs) can be considered
as a special architecture of neural networks that is
specifically used for image recognition. CNNs convolve the
input given using a filter of a specific size applied over the
entire input patch. These make them sensitive to or learn a
certain feature or structure of the input. Detection models
based on Convolutional Neural Networks are performance
efficient and highly accurate due to the training of the
neural network widely using datasets. They are used from
applications such as Facebook for its automated photo

tagging to self- drive cars as they can be used to identify
faces, traffic signals or other objects such as cars.

When an image is given as an input the system, the
computer sees it as an array of pixels. While the human
brain can effectively identify, the details present in the
image after viewing it through eyes, the neural network
does so by identifying the low-level features such as edges
and corners and then using the information learnt during
the training phase to classify the image.

At the crux of Convolutional Neural Networks is the
process of convolution. Convolution is, simply, a sliding
window function applied to its input layer (a matrix of
numbers) and computing the corresponding output layer.
The matrix of numbers could be an image data where each
number signifies a pixel. The sliding window is called a
kernel, filter or a feature detector. Each layer of CNN
(corresponding to input layer or the hidden layers of an
ANN), typically, applies hundreds of kernels and combine
their results. During the training phase, each CNN layer,
automatically, learns the values of each of its kernels.
Secondly, unlike the case of Artificial Neural Nets (ANN),
each neuron of a specific layer is not connected to all
neurons of the succeeding layer. The inputs to a layer is
apportioned among different kernels of that layer.
Applying this paradigm to an image classification problem,
a CNN layer may learn to construct edges from raw pixels
in the first layer, learn to construct small shapes in the
second layer and eventually at some layer may learn to
recognize a specific object. None of the connectivity
between successive layers is fully-connected. However, the
final layer is the Fully Connected Layer, which is used for
the classification of the image. The program consists of a
number of classifications that a feature of the image might
fit into. This layer considers the output of the previous
layer as an input and detects the closest class that the
features in the image correspond to and makes predictions.

The training phase of a neural network involves iterative of
a relevant error minimization algorithm similar to back
propagation algorithm. During the first iteration, the
program is unable to extract any low-level features or
classify the image. A loss function is used to calculate the
error factor. This error is used to alter the kernel values and
the resulting connections so as to minimize the error. Once
acceptable error is reached, the network is said to be trained
and usable for testing.

The inconvenience with respect to CNN is that the cost
involved in the training of the neural network and the time
taken to arrive at an output is high. This has forced the
need for an acceleration mechanism. Different acceleration
mechanisms have been proposed such as the convolution
operation in the spatial domain being converted to dot
operation in the frequency domain [6], CNNdroid [7] which
is a set of library functions that helps in GPU acceleration of
a CNN code and run it on Android, parallelization of tasks
on GPU or implementing Fourier Transform using Open

Output
Layer

Input
Layer

Hidden
Layer

1383

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 8, Issue ƘȮɯ ×ÙÐÓɪƖƔƕƛɯɯ
ISSN 2229-5518

IJSER © 2017
http://www.ijser.org

Computing Language (Open CL) on the convolution based
detection model [8].

Thus, an accelerated neural network is necessary for the
real-time processing of multimedia data.

Fig 3: CNN methodology

6 PLATFORM FOR EXPERIMENTATION

In the back drop of the gamut of tools briefed earlier
and their support to build CNN model alongside the
critical issue associated with multimedia applications with
emphasis on IoT and cloud based applications, the need of
the hour is to build an experimental test bed for research
investigations on CNNs for their applicability. Such an
experimental test bed as depicted in Fig.1 is built by
authors and employed to execute case studies briefed in the
following section. The test bed hardware, simply, consists
of a host computer that runs Ubuntu 16.04 which is
interfaced with an embedded system. The host computer is
equipped to receive the image/video data either from open
source repository or could even capture the image and
create the repository. Basically, the CNN augmented
processing software operates on the data and trains the
network for the intended mission. Once trained, the
weights associated with the kernel and the CNN model
itself is downloaded into the embedded system. Thus, the
host computer assumes the resource intensive training
activity whereas the embedded system executes the testing
phase or the real-life execution of the intended objective.
The software architecture of the test bed is depicted in
Fig.1. The target deployment port is customization software
that maps the API calls usable on the host computer with
its embedded counterpart. The TDP shall have to be ported
whenever the embedded hardware changes. In the present
work, a smart phone running Android 4.0 is used as the
target hardware.

7 USECASES
The very first application we aimed to develop involved the
use of the CIFAR-10 dataset consists of 60000 color images
in 10 classes with 6000 images per class. The size of these
images for versatility was 32 pixels by 32 pixels. The data
set consisted of 50000 training images and 10000 test
images. (put appropriate reference in this)

The dataset is first divided into five training batches and
one test batch with each consisting of 10000 images each.
The training batch and the test batch differ in, not only the

number of images they have to offer, but also in the
number of images from each class they input to the
convolutional layer of the neural net. The test batch
contains exactly 1000 randomly-selected images from each
class. The training batches however may contain more
images from one class than another. Between them, the
training batches contain exactly 5000 images from each
class. The model CIFAR-10 chosen was tested using an
above-mentioned tool called as Torch. Mean Accuracy
levels in running and testing the model on various different
data sets are compiled and tabulated in table below.

Iteration
Number:

Accuracy level
after 10 epochs:

Mean accuracy
value:

1. 98.425 -

2. 97.415 97.920

3. 98.620 98.153

Table 3: Output comparison

Another implementable idea which we took to working on
was based on thnets. Thnets is the work of Marko Vitez
who has compiled together a basic library which can run
neural networks created using the aforementioned software
tool called as Torch. The idea behind having a compiled
library includes the versatility with which we may be able
to import developed neural networks (some which have
that have been developed from scratch and some which
have been obtained from biological neural structures)
directly into the test code and run it. One of the main
requirements which were stated for the successful
implementation of thnets was OpenBLAS (Open Source –
Basic Linear Algebra Subprograms). This OpenBLAS is an
API with hand crafted optimizations for several processor
architectures like Intel’s Sandy Bridge and Loongson.
Successful implementation of the thnets module for
Image/Object recognition and classification gives us a
forward path time of about 7 seconds for the direct
implementation without the use of Hardware Accelerators
such as cuDNN (Nvidia CUDA Deep Neural Network
library).

The final and holistic environment we built includes an
Android application which could make use of the host
phone’s camera to take images for Object Recognition and
Classification. This was accomplished through the use of a
trained Caffe model. This specific application makes use of
Fast R-CNN for Object detection. One of the major things to
keep in mind while considering this specific model of Fast
R-CNN is the concept of R-CNN which is Region-based
Convolutional Neural Network. Fast R-CNN was created
by Ross Girshick at Microsoft Research, Redmond, USA. It
is a framework for faster object recognition when compared
with regular neural networks. Fast R-CNN runs almost 200

Convolution

Input

Output

Max Pooling
Max Pooling Convolution

Feature Maps

A

1384

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 8, Issue ƘȮɯ ×ÙÐÓɪƖƔƕƛɯɯ
ISSN 2229-5518

IJSER © 2017
http://www.ijser.org

times faster than regular R-CNN and almost 10 times faster
than Spatial Pyramid Pooling in a test real-time scenario.

The developed Android App on the basis of this concept of
Fast R-CNN includes a license from MIT open-source
image datasets. It has a support for Android version 4.0 and
upwards and supports all devices which have a 64-bit
architecture and/or an ARM v7 processor. The Caffe
model and weights used for proper functioning of the CNN
network is pushed onto an SD card and is input to the
Phone’s SD card slot. The entire system is built using
Gradle on Ubuntu or on Android Studio on Windows
before exporting the. apk file to the phone.

The developed Caffe model is capable of both object as well
as scene detection. An example output is shown below.

 Fig 4: Sample Output

Although in this section we have spoken about multiple
different applications and methods which we have used for
development of Object Recognition and Classification, the
main intention behind such a vast study lies in the scope for
future IoT systems. The main idea here is to come out with
a holistic IoT network which is, by itself, a separate and
autonomous entity. Present day IoT nodes act as channel
gateways for transfer of information from one device to
another. No amount of machine intelligence and autonomy
exists in their part and are thus unable to work more
efficiently and achieve a more well-rounded connectivity
within the nodal network. By developing support structure
to improve these nodal networks, as described below, we
may be able to come out with a new age of IoT nodes. The
idea is to come out with a system architecture which
consists of a Raspberry Pi or a cellphone running Android
which is capable of inter/intra communication within a
given nodal set in a more effective way than present day
IoT nodes. Such smart IoT networks warrant multimedia as
a critical resource whose very presence increases the

computational burden wherein the solution framework
based on CNNs would become handy.

8 CONCLUSIONS
CNN based computational support for multimedia

enabled applications with emphasis on IoT and Cloud
platform is presented in this paper. Use cases employed
elsewhere have been experimented using software tools
briefed in section III.

9 BIBLIOGRAPHY

[1] C. Dubout and F. Fleuret, 'Exact acceleration of linear
object detecotrs in Computer Vision' -ECCV 2012,
pp.301-311, Springer, 2012

[2] Seyyed Salar Latifi Oskouei, Hossein Golestani, Matin
Hashemi, Soheil Ghiasi, 'CNNdroid: GPU-Accelerated
Execution of Trained Deep Convolutional Neural
Networks on Android', 2016

[3] Qi Liu, Zi Ruang, and Fuqiao Ru, 'Accelerating
Convolution-based Detection Model on GPU', 2015

1385

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 8, Issue ƘȮɯ ×ÙÐÓɪƖƔƕƛɯɯ
ISSN 2229-5518

IJSER © 2017
http://www.ijser.org

1386

IJSER

http://www.ijser.org/

	1 Introduction
	2 Issues and Challenges
	2.1 Dawn of IOT and Cloud
	2.2 Issues related to Standardization
	3 Tools
	3.1 Caffe, Torch, Theano, TensorFlow
	Table 2: Comparitive study of different Image Processing Softwares
	3.2 OpenCV, OpenGL, Scenelib, OpenScene Graph, AR Toolkit, Unity 3D

	4 Convolutional neural networks
	7 Usecases
	8 Conclusions
	9 Bibliography

